

The Edge and Limitations in Robotic Surgery in a Public System

Introduction

- What is Robot in Medicine?
- What is the current application of robots?
- What are the advantages of robotic surgery?
- What are the limitations?

- 100

What should we do with it in the local public system?

History of Robotic system

- First Robotic assisted surgery 1988
 PUMA 560
 - Light duty industrial robotic arm to guide laser/needle for sterostactic brain surgery
- First Robotic urological surgery 1992

 PROBOT-assisted TURP in Guy's Hospital in London leaded by Wickham
- First commercially available robotic system, 1992
 ROBODOC for orthopaedic hip surgery
- First RCT of transatlantic telerobotics surgery
 Between Guy's and John Honkins Hospitals
 - PAKY-RCM percutaneous access robot (Karoussi grou developed in 1996)
 Kwok et al IEEE Trans Biomed Eng 1

Kwok et al IEEE Trans Biomed Eng 1988; 35: 153-60 Davies et al Proc Inst Mech Eng 1991; 205:35-8 Paul et al Clin Orthop 1992; 285: 57-66 Challacombe et al Comput Aided Surg 2005; 10: 165-71

PROBOT-assisted TURP

History of Robotic system

- First Robotic assisted surgery 1988

 PUMA 560
 Light duty industrial reference of the base begaller
- sterostactic brain surgery
- PROBOT-assisted TURP in Girds Hespital in London leaded by Wickham
- First commercially available robotic system, 1992
 ROBODOC for orthopaedic hip surgery
- First RCT of transatlantic telerobotics surgery
 Between Guy's and John Hopkins Hospitals
 - PAKY-RCM percutaneous access robot (Kavoussi group developed in 1996)

Kwok et al IEEE Trans Biomed Eng 1988; 35: 153-60 Davies et al Proc Inst Mech Eng 1991; 205:35-8 Paul et al Clin Orthop 1992; 285: 57-66 Challacombe et al Comput Aided Surg 2005; 10: 165-71

Robotic system

- AESOP (Computer Motion), 1994
 - Automated Endoscopic System for Optimal Positioning a voice-activated robotic arm for camera holder - First approved surgical robotic system by FDA
- ZEUS (Computer Motion)

- Da Vinci (Intuitive Surgical)
 Initially developed by US Department of Defence in 1991
 - Intuitive Surgical acquired the prototype and commercialized the system
 Approved by EDA in July 2000
- In March 2003 fusion of the two companies

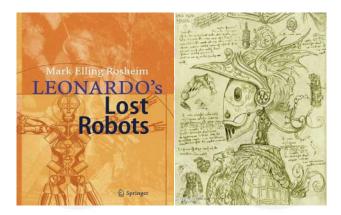
AESOP

Robotic system

- AESOP (Computer Motion)
- First approved surgical reboild system by FDA
 ZEUS (Computer Motion)

 Marketed in 1998
 - Marketed in 1998

Da Vinci (Intuitive Surgical)


- Intuitive Surgical acquired the prototype and commercialized the system
 Approved by EDA in July 2000
- In March 2003 H fusion of the two companies

Robotic system

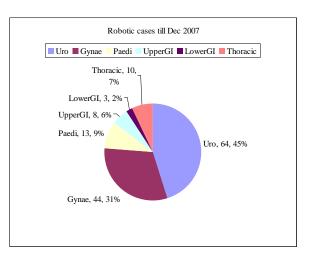
- AESOP (Computer Motion)
- ZEUS (Computer Motion)
- Da Vinci (Intuitive Surgical)
 - Initially developed by US Department of Defence in 1991 - Intuitive Surgical acquired the prototype and commercialized the
 - system
 - Approved by FDA in July 2000
- In March 2003 fusion of the two companies

Current status in the World

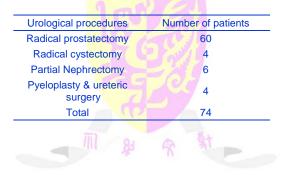
- In 2007,
 > 800 systems installed worldwide
 - ~ 50000 Robotic assisted laparoscopic
 - prostatectomy, the most commonly performed robotic procedure, were done per year

Hong Kong Experience

- First Machine
 - Installed in CUHK / PWH
 - Installed in November 2005
- Supported by donation by the Hong Kong Jockey Club and Kai Cheong Tong Foundation



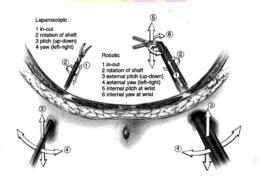
Current status in Hong Kong


- Total 4 machines

 3 for services
 1 for training
- First Machine 11/2005 (PWH / CUHK)
- Second Machine 03/2007 (HK Sanatorium)
- Third Machine 10/2007 (QMH / HKU)
- Fourth Machine 12/2007 (PWH / CUHK)
- First machine is now used for training in CUHK

Case load for urology till 3/2008

Advantages of da Vinci system


- Technically
 - Patented Endowrist \rightarrow 6 degrees of movement
 - 3-D vision (Dual channel endoscopy) and magnified view (x12)
- Tremor suppression and scaling of movement
- Surgeon
 - Ergonomic advantage
 - Shorter learning curve
- Patient
 - Better outcome

Advantages

6 degrees of moment

3-D vision

For Surgeon

For Assistants

Laparoscopic Prostatectomy

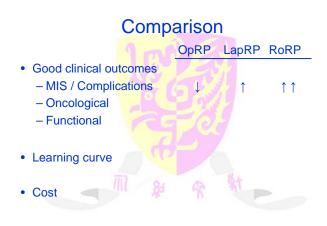
Surgical treatment -**Radical Prostatectomy** Localized Prostate cancer • Open retropubic radical prostatectomy(OpRP) Laparoscopic - Pure laparoscopic (LapRP) - Robotic Assisted (RoRP)

The ideal situation

- Good clinical outcomes
 - Complications
 - Oncological
 - Functional
- Transferrable technology - Short Learning Curve
- Affordable cost

Advantages of MIS

- Reduced trauma to the body
- Reduced <u>blood loss</u> and need for <u>transfusions</u>.
- Less post-operative pain and discomfort
- Less risk of infection
- Shorter hospital stay
- Faster recovery and return to normal daily activities
- · Less scarring and improved cosmesis


Review of LapRP vs RoRP

- Intraoperative and postoperative outcomes - comparable
- OT time
- RoRP 182 min (141-250) - LapRP 234 min (151-453)
- Estimated blood loss - RoRP 234 ml (75-500)
 - LapRP 482 ml (185-850)
- Single centre complications similar

Rozet et al World J Urol 2006; 24: 171

Open vs Robotic in PWH/CUHK

	Open	Robotic
Last	20 (12/03 - 2/05)	10 (10/07 – 1/08)
Transfusion rate	13/20	1/10
DAT (median)	4	4
Off drain (median)	4 0	3.5
Mobilization (median)	14-D)	3
Off catheter (median)	14.5	7
Margin positive	4/20	1/10

Oncological Outcomes

- Long term results still lacking
- 5 year outcomes
 - Bicochemical free survival = 84%

Badani et al Cancer 2007; 110: 1951

- From current data
 - Extrapolated \rightarrow should meet the standards

Herrmann et al World J Urol 2007; 25: 149

Margin positive: OpRP vs RoRP

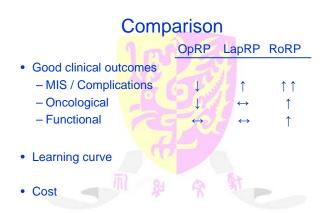
- Non-randomized trial
- Positive surgical margin rate higher in OpRP vs RoRP

Tewari et al BJU int 2003; 92: 205 Ahlering et al Urol 2004; 63: 819 Joseph et al J Urol 2007; 178: 2385

Margin positive rate

		No. Pos Margir			
		Robotic	Open	p Value	
	Risk profile:				
-	Low*	14/129 (10.9)	25/94 (26.6)	0.002	
-	Intermediate [†]	9/58 (15.5)	28/74 (37.8)	0.005	
- 1	High [‡]	7/18 (53.8)	18/32 (56.3)	0.883	
	Surgical technique:				
	Nerve sparing	22/174 (12.6)	36/113 (31.9)	< 0.001	
- 1	Nonnerve sparing	8/26 (30.8)	35/87 (40.2)	0.366	
- 1	p Value	0.054	0.221		

Joseph et al J Urol 2007; 178: 2385 200 OpRP vs 200 RoRP


Comparison OpRP LapRP RoRP Ogram MIS / Complications - Oncological ↑ ↑↑ - Functional ↓ ↓ • Learning curve • Cost

Potency • OpRP: 21 – 90 % • LapRP: 39 – 72 % • RoRP: 36 – 84 % • Comparable Hermann et al World J Urol 2007; 25: 149

Recovery of Continence

Follow-up	ORP		LRP			RALP	
	Eastham [61]	Harris [32]	Salomon [30]	Stolzenburg [42]	Rassweiler [36]	Menon [46]	Joseph [54]
1 month (%)	28	38	45	NA	28	50°	28
3 months (%	65	62	63	67.9	51	90 ^a	93
6 months (%)	79	85	74	85	70	NA	96
12 months (%)	92	96	90	91.9	84	95.2ª	NA
24 months (%)	95	NA	NA	NA	97	NA	NA

Transferrable techniques

- "See one, do one, teach one"
- NOT for Radical Prostatectomy
- Take time to learn

Learning curve Initial experience of LapRP

- OpRP → LapRP
 - In 1992, Kayoussi and Clayman group, first successful lap RRP
 - "Offer No advantage"
 - No much report till 2000
 - European groups revisit the procedure

Schuessler et al J Urol 1991; 145: 988 Schuessler et al J Urol 1992; 147: supp: 246A abst 130

Learning Curve: Real Life situation for RoRP

- In 2000, first cases by Binder and Kramer
- In 2001 ~ 250 cases done in US
- In 2007 estimated ~ 50000 per years

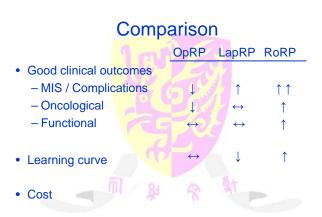
Learning Curves - RoRP

- OpRP → RoRP
 - Menon = 1<mark>8 cases</mark>
 - Ahlering = 12 cases
- Lap fellowship → RoRP – Patel = 18 cases
- Based on OR time

Menon et al J Urol 2002; 168: 945 Ahlering et al J Urol 2003; 170: 1738 Patel et al J Urol 2005; 174: 269

Short learning curve

What are the problems?


- During the learning phase
 Suboptimal performance
- "supervised trial & error"
- To the patients
 - More bleeding
 - Longer operating time
 - More complications
 - More positive margins Menon et al J Urol 2003; 169: 2289
 - Poor functional outcomes Menon et al J endourol 2003; 17:

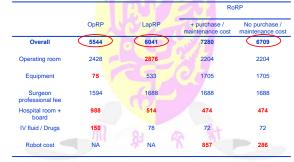
Ahlering et al Urol 2004; 64 1224-8

What are the problems?

 Low incidence in Chinese → even longer periods to be mature

At the end

- "Do you want to be operated by a learner?"
- If you don't want it, don't do it on the other



What is the cost for Robotic surgery

- Machine purchase
 HKD 18 millions
- +/- OR set up – Platform
- Yearly maintenance cost
 HKD 1.2 million
- Consumable cost
 ~ 15000 to 20000 per cases

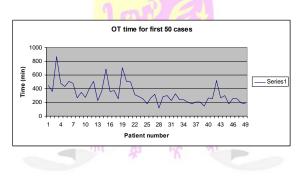
Cost comparison (with respect to Open approach)

Lotan et al J Urol 2004; 172: 1431

The ideal situation OpRP LapRP RoRP Good clinical outcomes - MIS / Complications 1 $\uparrow \uparrow$ 1 - Oncological Ļ \leftrightarrow ↑ - Functional ↑ \leftrightarrow • Learning curve \leftrightarrow 1 Cost 1 ↓(?)

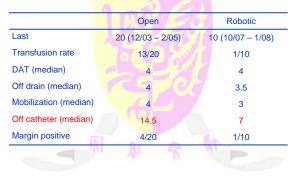
The evidences

- No doubt
 - Better outcomes and results
 - More expensive (in simple calculation)
- How can we get the balance?
 - Decrease the cost


How to cut cost?

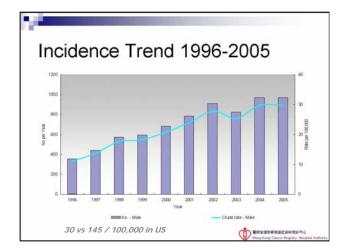
- Decrease the cost
- Shorten OR time & hospital stay
- Both can be improved with experience

Scales et al J Urol 2005; 174: 2323


Increase case load
 Share out the Maintenance cost

Our learning curve

Open vs Robotic in PWH/UHK



Hospital stay

- Most patients insist to be catheter free before discharge
- Open → RoRP
 - Median off catheter time shortened from 14.5 to 7 days
 - Cost saved = ~HK\$ 3000 x 7 days

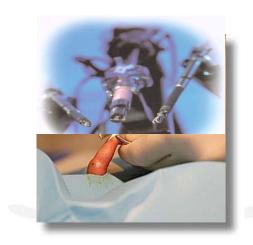
Prostatectomy cases

- From CDARS system
 - 1/4/2007 to 31/7/2008
 - Total 160 radical prostatectomy done in HA Hospital
- In Private Hospital
 - About 60 cases of Robotic radical prostatectomy done for 1 year
- If we assumed the public robotic system can handle about the same (or slightly higher) case load as that of the private hospital
 - -160 cases = -3 robotic systems

Better usage of resources

- Other examples in HK
- Transplant Surgery
- Vascular surgery
- Trauma centre
- Robotic prostatectomy

 an ultra-major surgery
 - better to be concentrated in certain centres


Better usage of resources

- Concentrate in certain centres for the procedure
 - <u>Increase case load</u> → Better usage of resources
 - <u>Improve performance</u> → shorter operation time, hospital stay → less cost
 - <u>Better training</u> opportunities rotation of staffs
- → Benefit our patients and our health care systems

Justification of Usage

 More cases → cheaper cost →Using Robot for all surgery?

The Evidences

Formulate clinical guidelines for justification of usages

Conclusion

- Robotic Assisted procedure
 - No doubt in improving the quality of care of our patients
 - No doubt in increasing the financial burden to the health care system
- A careful balance of the indications, clinical evidences, resources/patients allocation is crucial to maximize the costeffectiveness of the procedure

Thank You

